AMBULATORY ELECTROCARDIOGRAPHIC MONITORING IN HEALTHY NEWBORN INFANTS*

Faruk Alpay MD**, Alpay Çeliker MD***, M. Koray Lenk MD****
Okan Özcan MD***** Şakir Tanımdı MD****** Ersoy Işık MD******

24-hour ambulatory electrocardiographic monitoring is a useful method to document dysrhythmias and to assess treatment response. Various studies have been done in the pediatric age-group to determine normal heart rate values. In this study we determined the heart rate and rhythm patterns of 25 healthy newborn infants whose ages ranged between 3-10 days (mean 6.5 days). There were 15 males and 10 females. The maximum heart rate in these infants was 175-221 beats/min (207 ± 14), minimum heart rate 69-121 beats/min (93 ± 16) and the average heart rate was 130-161 beats/min (143 ± 9). Five infants (20%) demonstrated marked sinus dysrhythmia, seven infants (28%) had ventricular premature contractions, two infants (8%) had supraventricular premature contractions, and five infants (20%) showed junctional rhythm disturbance. The sinus pause did not exceed 1.2 sec and there was no evidence of atrioventricular conduction disorders, or supraventricular or ventricular tachycardia attacks.

Our results were consistent with previous studies carried out in newborn infants. Dysrhythmias were detected during 24-hour ambulatory electrocardiographic monitoring in our study group. Since they were generally benign, they need no treatment.

Key words: 24-ambulatory electrocardiographic monitoring, newborn infants, dysrhythmia.

Cardiac dysrhythmias are relatively rare in newborns because resting surface electrocardiograms (ECGs) are usually performed over a short time period. Since 24-hour ambulatory ECG monitoring (AEM) is now available, various types of dysrhythmias, including those which are relatively benign such as sinus pause and second degree type I atrioventricular block have been detected in healthy newborns.

Several AEM studies have been conducted in special populations of healthy newborn infants, and results indicate that there seems to be a wide range of bradydysrhythmias and tachydysrhythmias in the normal neonate.

* From the Departments of Pediatrics and Cardiology, Gülhane Military Academy of Medicine, Ankara.
** Associate Professor of Pediatrics, Gülhane Military Academy of Medicine.
*** Associate Professor of Pediatrics and Pediatric Cardiologist, Hacettepe University Faculty of Medicine.
**** Associate Professor of Pediatrics, Gülhane Military Academy of Medicine.
***** Professor of Pediatrics and Pediatric Haematologist, Gülhane Military Academy of Medicine.
******* Professor of Internal Medicine and Cardiologist, Gülhane Military Academy of Medicine.
This paper reports the results obtained from AEM studies performed in 25 healthy full-term neonates to determine heart rate and detect the presence of dysrhythmias. The birthweights of the neonates did not exceed 2500 g.

Material and Methods

Healthy newborn infants were defined as those presenting with no structural heart defects or symptoms of hypoglycemia, hypocalcemia, hyperbilirubinemia, polycytemia and septicemia. Between 1 November 1990 and 30 June 1991, AEM was obtained for 25 babies (15 males, 10 females), aged 3 to 10 days (mean 6.5 days); born in the Obstetrics Unit of Gülhane Military Academy of Medicine. The results of the cardiovascular examination and regular electrocardiography were normal for all subjects.

AEM was performed using a two channel 24-h portable tape recorder (Hewlett-Packard, U.S.A.). The tapes were played and analyzed using an ECG high-speed analyzer. Recordings with interference were deleted. Full disclosure of all ECGs were not obtained. The analyzer was only able to determine RR and PP interval changes. Thus several supraventricular and ventricular premature beats, sinus pause, heart rate trend curves and heart rate histograms were easily interpreted (Fig. 1).

Fig. 1: R-R interval distribution graph. It shows a striking relatively narrow R-R interval distribution. BPM: beat/min.
Sinus arrhythmias were classified using the criteria of Brodsky et al:11 irregular sinus arrhythmias with adjacent cycle lengths varying by 10% to less than 50% (mild), 50% to less than 100% (moderate), and 100% or more (marked). Supraventricular and ventricular premature contraction were defined according to the P wave, PR interval, QRS interval and T wave changes6-12. First degree atioventricular block (AV) was defined as a PR interval of 1.8 s or more. The Wenckebach type AV block was defined as gradual prolongation of the PR interval terminating in a nonconducted P wave a dropped ventricular beat6-12. Mobitz II AV block and complete heart block are described elsewhere6-12.

Results

All infants were predominantly in sinus rhythm and showed a minimal continuous irregularity of rate (Fig. 2). The heart rate fluctuated widely in the newborn infants. The maximum heart rate was 207 ± 14 beats/min (range 175-231), minimum heart rate 93 ± 16 beats/min (range 60-121) and average heart rate was 143 ± 9 beats/min (range 130-161) (Table I).

Mild or moderate sinus arrhythmias were detected in all subjects, however, marked sinus arrhythmias were determined in only five neonates (20%). Sinus

![Graph showing maximum, minimum, and average heart rates.](image-url)
pause was not detected in our study population beyond marked sinus arrhythmias (Table II).

Ventricular premature contractions (VCPs) were the most common type of dysrhythmia observed in our study group (Fig. 3). Seven infants (28%) had at least one VPC/24 hours. There was a 12% incidence of subjects with five VPCs or more. There was no bigeminy, trigeminy or ventricular tachycardia.

Supraventricular premature contractions (SVPCs) were the second common type of dysrhythmia observed. Two full-term newborns (8%) had several SVPCs during

| Table I: Clinical and 24-Hour Ambulatory Electrocardiographic Data in Full-Term Neonates |
|-------------------------------|-----------------|
| Age (day) | 6.5 ± 1.9 |
| Weight (g) | 3232 ± 4.1 |
| Hemoglobin (g/dl) | 18.7 ± 2.9 |

<table>
<thead>
<tr>
<th>Previous Reports1-6</th>
</tr>
</thead>
<tbody>
<tr>
<td>Minimum Heart Rate (beat/min)</td>
</tr>
<tr>
<td>Maximum Heart Rate (beat/min)</td>
</tr>
<tr>
<td>Average Heart Rate (beat/min)</td>
</tr>
</tbody>
</table>

| Table II: Dysrhythmias Detected During Ambulatory-24 Hour Electrocardiographic Monitoring |
|-------------------------------|-----------------|-----------------|
| No of Patients | % | Previous Reports |
| Sinus Dysrhythmia | 25/25 | 100 | 100 |
| Marked | 5/25 | 20 | ? |
| Premature Ventricular Contractions | 7/25 | 28 | 6 - 17 |
| Premature Atrial Contractions | 2/25 | 8 | 2 - 33 |
| Junctional Rhythm | 5/25 | 20 | 18 - 70 |
| Sinus Pause | – | – | 5 |
| AV Block | – | – | 4 - 6 |

AV: atrioventricular
Fig. 3: Ventricular premature contractions (black arrow) in a newborn infant.

Fig. 4: Junctional escape (white arrow) and supraventricular escape (black arrow) in a newborn during the lowest heart rate episode.
AEM. Supraventricular tachycardia attacks were not noted in the study group. Junctional rhythm disturbance was observed in five infants (20%) during nighttime recordings. This rhythm was usually detected during the lowest heart rate episode (Fig. 4). There was no evidence of first and second degree type 1 block (Wenckebach) in our study group.

Discussion

The heart rate range detected in these healthy newborn infants were similar to previously reported studies. The mean lowest rate measured by AEM was 93 beats/min, with a standard deviation of 16. Heart rates as low as 60 beats/min were recorded over shorter periods and 20 percent of these infants experienced brief episodes of junctional escape rhythms during their lowest rates. Sudden episodes of bradycardia are a distinct feature of cardiac rhythm in this age group. Studies have not been able to discern if there is a correlation between heart rate and respiratory pattern changes in sudden infant death syndrome.

Southall found that 72 percent of healthy newborn infants had sinus pauses, namely complete sinoatrial exit block, sinus arrest, 2:1 sinoatrial block and sinoatrial Wenckebach block with the longest escape interval being 1.8 s. On the other hand Nakashima did not find any sinus pause attacks in his newborn group. Montague reported a sinus pause attack that lasted 840 milliseconds in one newborn subject although we did not detect any sinus pauses, in our infant group various sinus arrhythmias were present. We do not have full disclosure of 24 hour ECGs, but it not affect the results.

There is a greater incidence and frequency of VPCs over a 24-hour period in older children than in younger children. Nakashima reported an 18 percent incidence of VPCs in his newborn infant series. VPCs were also a common occurrence in our study group; seven newborns (28%) had at least one VPC during the 24-hour AEM. In various other studies the incidence of VPCs in infants series has also been reported to be low. In conclusion, our results may be due to different recording and playback scanner units which are more sensitive.

Montague et al. conducted a study to investigate cardiac rhythm in 29 newborn infants with a mean age of 3.5 days. They found that only two infants experienced a SVPC which occurred at the beginning of the monitoring. However, Nakashima reported a high incidence of SVPCs in healthy neonates. Of 80 full-term infants studied using 24-hour AEM, Southall et al. detected SVPCs in nine of these infants. They concluded that cardiac rhythm seems to be more stable in infants than in older children and adults and speculated that premature contractions disappear soon after the hemodynamic state is stabilized in the first few days of life. In another study, Southall reported that 85 percent of dysrhythmias can not be detected after 12 weeks of age. In our study group, the incidence of SVPC
was 8 percent. We were unable to explain the relatively low incidence of SVPCs detected in our newborn infant group.

It is very difficult for pediatricians to ascertain whether cardiac dysrhythmias or abnormal findings on the ECG of newborn infants are a prediction of Sudden Infant Death syndrome. The results of our study offered no clues regarding Sudden Infant Death Syndrome. AV block was not demonstrated in our newborn infant group, although an incidence of 4-6 percent has been reported in various studies. There was also no detection of AV block in the patients Nakashima and Montague et al studied. Since it is known that the incidence of AV block increases with age, these findings are not surprising.

A few studies, involving relatively large groups of infants documented infrequent supraventricular and ventricular attacks of tachycardia. Nakashima and Montague et al did not detect these types of dysrhythmias in their newborn infant groups. Our results were consistent with these studies.

In conclusion the dysrhythmias detected in our newborn infants group during 24-hour AEM were generally benign and needed no treatment. We found no evidence of conduction disturbances or sinus node dysfunction in the infants. Our results indicate that the newborn infants we studied have a relatively stable hemodynamic status. It must be stressed, however, that dysrhythmias, other than the above-mentioned, must be managed appropriately.

REFERENCES

